Step of Proof: p-fun-exp-add-sq
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-fun-exp-add-sq
:
A
:Type,
f
:(
A
(
A
+ Top)),
x
:
A
,
m
,
n
:
.
(
can-apply(
f
^
m
;
x
))
((
f
^
n
+
m
(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
;
x
))))
latex
by (InductionOnNat)
CollapseTHEN ((UnivCD)
CollapseTHENA (Auto
)
)
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
f
:
A
(
A
+ Top)
C1:
3.
x
:
A
C1:
4.
n
:
C1:
5.
can-apply(
f
^0;
x
)
C1:
(
f
^
n
+0(
x
)) ~ (
f
^
n
(do-apply(
f
^0;
x
)))
C
2
:
C2:
1.
A
: Type
C2:
2.
f
:
A
(
A
+ Top)
C2:
3.
x
:
A
C2:
4.
m
:
C2:
5. 0 <
m
C2:
6.
n
:
. (
can-apply(
f
^
m
- 1;
x
))
((
f
^
n
+(
m
- 1)(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
- 1;
x
))))
C2:
7.
n
:
C2:
8.
can-apply(
f
^
m
;
x
)
C2:
(
f
^
n
+
m
(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
;
x
)))
C
.
Definitions
n
-
m
,
n
+
m
,
-
n
,
i
j
,
Type
,
s
~
t
,
,
b
,
can-apply(
f
;
x
)
,
f
^
n
,
suptype(
S
;
T
)
,
,
{
x
:
A
|
B
(
x
)}
,
A
,
False
,
P
Q
,
a
<
b
,
#$n
,
A
B
,
left
+
right
,
S
T
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
Top
,
x
:
A
.
B
(
x
)
,
t
T
,
Void
Lemmas
ge
wf
,
nat
properties
,
nat
wf
,
assert
wf
,
can-apply
wf
,
p-fun-exp
wf
,
le
wf
,
top
wf
origin